Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм).
УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы.
Искусственные источники УФИ широко применяются в промышленности, медицине и др.
Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками.
Источники биологически эффективного УФИ можно подразделить на газоразрядные и флюоресцентные. К газоразрядным относятся ртутные лампы низкого давления с максимумом излучения на длине волны 253,7 нм, т.е. соответствующие максимуму бактерицидной эффективности, и высокого давления с длинами волн 254, 297, 303, 313 нм. Последние широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных заболеваний. Ксеноновые лампы применяются для тех же целей, что и ртутные. Оптические спектры импульсных ламп зависят от используемого в них газа - ксенон, криптон, аргон, неон и др.
В люминесцентных лампах спектр зависит от использованного ртутного люминофора.
Избыточному воздействию УФИ могут подвергаться работники промышленных предприятий и медицинских учреждений, где используются выше перечисленные источники, а также люди, работающие на открытом воздухе за счет солнечной радиации (сельскохозяйственные, строительные, железнодорожные рабочие, рыбаки и др.).
Установлено, что как недостаток, так и избыток УФИ отрицательно сказываются на состоянии здоровья человека. При недостаточности УФИ у детей развивается рахит вследствие нехватки витамина Д и нарушения фосфорно-кальциевого обмена, снижается активность защитных систем организма, в первую очередь - иммунной, что делает его более уязвимым к воздействию неблагоприятных факторов.
Критическими органами к восприятию УФИ являются кожа и глаза. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острые конъюнктивиты. Заболеванию предшествует латентный период, продолжительность которого около 12 часов. С хроническими поражениями глаз связывают хронический конъюнктивит, блефарит, катаракту хрусталика.
Поражения кожи протекают в форме острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления. В дальнейшем наблюдаются гиперпигментация и шелушение. Хронические изменения кожных покровов, вызванных УФИ, выражаются в старении кожи, развитии кератоза, атрофии эпидермиса, возможны злокачественные новообразования.
В последнее время интерес к укреплению здоровья населения путем профилактического ультрафиолетового облучения значительно возрос. Действительно, ультрафиолетовое голодание, наблюдаемое обычно в зимнее время года и особенно у жителей Севера России, ведет к значительному снижению защитных сил организма и повышению уровня заболеваемости. В первую очередь страдают дети.
Наша страна является родоначальницей движения за компенсацию ультрафиолетовой недостаточности у населения с исполь- зованием искусственных источников ультрафиолетовой радиации, спектр которых приближается к естественному. Опыт использования искусственных источников ультрафиолетовой радиации требует соответствующей коррекции в отношении дозы и методов использования.
Территория России с юга на север простирается от 40 до 80? с.ш. и условно делится на пять климатических районов страны. Оценим естественный ультрафиолетовый климат двух крайних и одного среднего географических районов. Это районы Севера (70? с.ш. - Мурманск, Норильск, Дудинка и др.), Средней полосы (55? с.ш. - Москва и др.) и Юга (40? с.ш. - Сочи и др.) нашей страны.
Напомним, что по биологическому действию спектр ультрафиолетового излучения Солнца делится на две области: «А» - излучение с длиной волны 400-315 нм, и «В» - излучение с длиной волны менее 315 нм (до 280 нм). Однако практически земной поверхности лучи короче 290 нм не достигают. Ультрафиолетовое излучение с длиной волны менее 280 нм, которое имеется только в спектре искусственных источников, относится к области «C» ультрафиолетовой радиации. У человека отсутствуют рецепторы, которые срочно (с малым латентным периодом) реагируют на ультрафиолетовую радиацию. Особенностью естественного УФ-излучения является его способность вызывать (с относительно длинным латентным периодом) эритему, являющуюся специфической реакцией организма на действие УФ-радиации солнечного спектра. В наибольшей степени образовывать эритему способна УФ-радиация с длиной волны максимум 296,7 нм (табл. 10.1).
Таблица 10.1. Эритемная эффективность монохроматического УФ-излучения
Как видно из табл. 10.1, излучение с длиной волны 285 нм в 10 раз, а лучи с длиной волны 290 нм и 310 нм в 3 раза менее активно образуют эритему, чем излучение с длиной волны 297 нм.
Приход суточной УФ-радиации солнца для указанных выше районов страны в летний период (табл. 10.2) относительно высок 35- 52 эр-ч/м -2 (1 эр-ч/м -2 = 6000 мкВт-мин/см 2). Однако в другие периоды года имеется существенное различие, и зимой, особенно на Севере, естественная радиация солнца отсутствует.
Таблица 10.2. Среднее распределение эритемной радиации области (эр-ч/м -2)
Северная широта | Месяц |
|||
III | VI | IX | XII |
|
18,2 | ||||
26,7 | 46,5 |
Величина суммарной радиации в различных широтах отражает суточный приход излучения. Однако при учете количества излуче- ния, поступающего в среднем не за 24, а лишь за 1 час, выявляется следующая картина. Так, в июне на широте 70? с.ш. за сутки поступает 35 эр-ч/м -2 . Солнце при этом все 24 часа не уходит с небосвода, следовательно, в час эритемная радиация будет составлять 1,5 эр-ч/м -2 . В этот же период года на широте 40? Солнце излучает 77 эр-ч/м -2 и сияет 15 часов, следовательно, часовая эритемная облученность составит 5,13 эр-ч/м -2 , т.е. величину в 3 раза большую, чем на широте 70?. Для определения режима облучения целесообразно проводить оценку прихода суммарной УФ солнечной радиации не за 24, а за 15 часов, т.е. за период бодрствования человека, так как в конечном итоге нас интересует количество естественной радиации, влияющей на человека, а не количество энергии Солнца, падающей на поверхность Земли вообще.
Важной особенностью действия на человека естественной УФрадиации является способность предупреждать так называемую D-витаминную недостаточность. В отличие от обычных витаминов, витамин D фактически не содержится в естественных продуктах питания (исключение составляют печень некоторых рыб, особенно трески и палтуса, а также яичный желток и молоко). Этот витамин синтезируется в коже под воздействием УФ радиации.
Недостаточное воздействие УФ-излучения без одновременного действия видимой радиации на организм человека приводит к разно- образным проявлениям D-авитаминоза.
В процессе D-витаминной недостаточности в первую очередь нарушаются трофика центральной нервной системе и клеточное дыхание, как субстрат нервной трофики. Это нарушение, ведущее к ослаблению окислительно-восстановительных процессов, следует, очевидно, считать основным, в то время как все остальные многообразные проявления будут вторичными. Наиболее чувствительны к отсутствию УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит и, как следствие рахита, - близорукость.
Способностью предупреждать и излечивать рахит в наибольшей степени обладает УФ-излучение области В.
Процесс синтеза витамина D под воздействием УФ-излучения довольно сложен.
В нашей стране витамин D был получен синтетическим путем в 1952 г. Исходным сырьем для синтеза послужил холестерин. В процессе превращения холестерина в провитамин образовывалась двойная связь в кольце В стерина путем последовательного бромирования. Полученный бензонат 7-дегидрохолестерина омыляется в Г-дегидрохолестерин, который уже под воздействием УФ-излучения превращается в витамин. Сложные процессы перехода провитамина в витамин зависят от спектрального состава УФ-радиации. Так, лучи с длиной волны максимум 310 нм способны превращать эргостерин в люмистерин, который переходит в техистерин, и, наконец, под действием лучей с длиной волны 280-313 нм техистерин превращается в витамин D.
Витамин D в организме осуществляет регуляцию содержания кальция и фосфора в крови. При недостаточности этого витамина нарушается фосфорно-кальциевый обмен, тесно связанный с процессами окостенения скелета, кислотно-щелочным равновесием, свертываемостью крови и т.д.
При рахите нарушается условно-рефлекторная деятельность, при этом образование условных рефлексов происходит медленнее, чем у здоровых людей, и они быстро исчезают, т.е. возбудимость коры головного мозга у детей, страдающих рахитом, значительно понижена. При этом клетки коры функционируют слабо и легко истощаются. Кроме того, наблюдается расстройство тормозной функции больших полушарий.
Торможение в течение длительного времени может широко распространяться по коре мозга.
Совершенно ясно, что необходимо проводить соответствующие профилактические мероприятия, т.е. использовать полноценный УФ-климат.
Тип источника | Мощность, Вт | Облученность в энергетических единицах на расстоянии 1 м |
|||||
УФ-радиация область А | УФ-радиация область В | УФ-радиация область С |
|||||
мкВт/см 2 | % | мкВт/см 2 | % | мкВт/см 2 | % |
||
ПРК-7 (ДРК-7) | 1000 | ||||||
ЛЭР-40 | 28,6 | 22,6 |
Однако следует заметить, что спектральный состав искусственного радиационного климата, имеющий место в условиях фотария с лампой типа ПРК, значительно отличается от естественного наличием коротковолновой УФ-радиации.
С выпуском в нашей стране эритемных люминесцентных ламп небольшой мощности стало возможным использование искусст- венных источников УФ-радиации в условиях фотария и в системе общего освещения.
Доза профилактического УФ-облучения. Несколько слов из истории. Профилактическое облучение шахтеров было начато в 30-х годах ХХ столетия. В то время не было соответствующего опыта и необходимой теоретической базы в отношении выбора дозы именно
профилактического облучения. Было решено использовать опыт лечебный, применяемый в физиотерапевтической практике при лечении разного рода заболеваний. Заимствованы были не только источники УФ-радиации, но и схема облучения. Биологический эффект облучения лампами ПРК, в спектре которых имеется бактерицидное излучение, был весьма сомнителен. Так, нами установлено, что соотношение биологической активности областей «В» и «С», участвующих в образовании эритемы, составляет 1:8. Первые методические указания по эксплуатации фотариев были разработаны преимущественно физиотерапевтами. В дальнейшем вопросами профилактического облучения занимались гигиенисты, биологи. В 50-х годах прошлого столетия проблема профилактического облучения приобрела гигиеническую направленность. Были проведены многочисленные исследования в разных городах и климатических районах России, которые позволили по-новому подойти к дозе профилактического УФ-облучения.
Установление профилактической дозы УФ-радиации является весьма трудной задачей, ибо следует решать и учитывать ряд связанных между собой факторов, таких как:
Источник УФ-радиации;
Способ его использования;
Площадь облучаемой поверхности;
Сезон начала облучения;
Фоточувствительность кожи (биодоза);
Интенсивность облучения (облученность);
Время облучения.
В работе использовались эритемные лампы, в спектре которых отсутствует бактерицидное УФ-излучение. Эритемная биодоза
Таблица 10.4. Взаимосвязь физических и приведенных единиц для
выражения дозы УФ-радиации области В (280-350 нм)
мкВт/см 2 | мЭр-ч/м 2 | мкЭр-ч/см 2 | мЭр-мин/м 2 |
|
мкВт/см 2 | 0,0314 | |||
мЭр-ч/м 2 | ||||
мкЭр-ч/м 2 | 0,157 | |||
мЭр-мин/м 2 | 0,0157 |
выражена в физических (мкВт/см 2) или приведенных (мкЭр/см 2) величинах, соотношения которых представлены в табл. 10.4.
Следует особо подчеркнуть, что облученность эритемного потока УФ излучения оценивать в эффективных (или приведенных) еди- ницах - эрах (Эр - эритемный поток излучения с длиной волны 296,7 нм мощностью 1 Вт) можно лишь при излучении области «В».
Для выражения облученности участка «В» УФ-спектра в эрах следует его облученность, выраженную в физических единицах (Вт), умножить на коэффициент эритемной чувствительности кожи. Коэффициент эритемной чувствительности кожи для лучей с длиной волны 296,7 нм принят в 1935 г. Международной комиссией по освещению за единицу.
Используя лампы ЛЭР, мы приступили к нахождению оптимальной профилактической дозы УФ-радиации и оценке «метода облучения», под которым имеется в виду главным образом длительность ежедневного облучения, продолжающегося от минуты до нескольких часов.
В свою очередь длительность профилактического облучения зависит от способа использования искусственных излучателей (исполь- зования излучателей в системе общего освещения или в условиях фотария) и от фоточувствительности кожи (от значения эритемной биодозы).
Разумеется, что при разных способах применения искусственных излучателей облучению подвергаются разные по площади поверхности тела. Так, при использовании люминесцентных ламп в системе общего освещения облучаются лишь открытые части тела - лицо, руки, шея, волосистая часть головы, а в фотарии - практически все тело.
УФ-облученность в помещении при использовании эритемных ламп небольшая, отсюда длительность облучения составляет 6-8 ч, тогда как в фотарии, где облученность достигает значительной величины, действие радиации не превышает 5-6 мин.
При нахождении оптимальной дозы профилактического облучения следует руководствоваться тем, что начальная дозы профилактического облучения должна быть ниже биодозы, т.е. субэритемной. В противном случае возможен ожог кожи. Профилактическая доза УФ-составляющей должна выражаться в абсолютных величинах.
Постановка вопроса о выражении профилактической дозы в абсолютных физических (приведенных) величинах отнюдь не
означает отказа от необходимости определения индивидуальной чувствительности кожи к УФ-радиации. Определение биодозы перед началом облучения необходимо, но лишь для того, чтобы выяснить, не меньше ли она рекомендуемой профилактической дозы. Практически при определении биодозы (по Горбачеву) можно использовать биодизиметр, имеющий не 8 или 10 отверстий, как это имеет место в лечебной практике, а значительно меньше или даже одно, которое может быть облучено дозой, равной профилактической. Если облучаемый участок кожи покраснел, т.е. биодоза меньше профилактической, то начальная доза облучения должна быть уменьшена, а облучение проводится возрастающими дозами при начальной дозе равной биодозе.
Сравнительный анализ таких физиологических показателей, как эритемная биодоза, фагоцитарная активность лейкоцитов крови, ломкость капилляров, активность щелочной фосфотазы свидетельствовал о том, что дополнительное искусственное облучение УФ-радиацией эритемными лампами, проводимое зимой, вызывая весьма положительное действие, не способствует в полной мере поддержанию изучаемых физиологических реакций на том уровне, который наблюдается осенью после длительного воздействия природной УФ-радиации.
Анализ уровней физиологических показателей облучающихся дозой УФ-радиации при разном методе облучения, обусловленном способом использования искусственных излучателей, позволил сделать заключение, что биологический эффект воздействия УФ-радиации не зависит от примененных методов облучения.
Динамика чувствительности кожи к УФ-радиации известным образом отражает процессы, происходящие в организме в результате длительного отсутствия природной УФ-радиации.
При профилактическом УФ-облучении необходимо учитывать климатические особенности местности, где проживают облучаемые (для определения сроков облучения), среднее значение их эритемной биодозы (для выбора начальной дозы облучения) и то, что профилактическая доза облучения, нормируемая в абсолютных величинах, не должна быть ниже 2000 мкВт-мин/см 2 (60-62 мЭр-ч/м 2).
Профилактические мероприятия по предупреждению острого конъюнктивита при воздействии УФИ сводятся к применению светозащитных очков или щитков при электросварочных и других работах с источниками УФИ. Для защиты кожи от УФИ используются
защитная одежда, противосолнечные экраны (навесы), специальные кремы.
Основная роль в профилактике неблагоприятного воздействия УФИ на организм принадлежит гигиеническим нормативам. В настоящее время действуют «Санитарные нормы ультрафиолетового излучения в производственных помещениях» СН? 4557-88. Нормируемой величиной является облученность, Вт/м1. Указанные нормативы регламентируют допустимые величины УФИ для кожи с учетом длительности облучения в течение рабочей смены и площади облучаемой поверхности кожи.
Солнце – мощный источник тепла и света. Без него не может быть жизни на планете. От солнца исходят лучи, которые не видны невооруженным глазом. Узнаем, какие свойства имеет ультрафиолетовое излучение, его влиянии на организм и возможном вреде.
Солнечный спектр имеет инфракрасную, видимую и ультрафиолетовую части. УФ оказывает и положительное, и отрицательное действие на человека. Его используют в разных сферах жизнедеятельности. Широкое применение отмечается в медицине, ультрафиолетовое излучение имеет свойство изменять биологическую структуру клеток, оказывая воздействие на организм.
Источники облучения
Главный источник ультрафиолетовых лучей – солнце. Также их получают при помощи специальных лампочек:
- Ртутно-кварцевые высокого давления.
- Витальные люминесцентные.
- Озонные и кварцевые бактерицидные.
В настоящее время человечеству известны лишь некоторые виды бактерий, способные существовать без ультрафиолета. Для остальных живых клеток его отсутствие приведет к смерти.
Какого же влияние ультрафиолетового излучения на организм человека?
Положительное действие
На сегодняшний день УФ широко используется в медицине. Он обладает успокаивающим, болеутоляющим, антирахитическим и антиспастическим воздействием. Положительное влияние ультрафиолетовых лучей на организм человека:
- поступление витамина D, он нужен для усвоения кальция;
- улучшение обмена веществ, так как активизируются ферменты;
- снижение нервного перенапряжения;
- повышение выработки эндорфинов;
- расширение сосудов и нормализация циркуляции крови;
- ускорение регенерации.
Ультрафиолет для человека полезен также тем, что он воздействует на иммунобиологическую активность, способствует активизации защитных функций организма против различных инфекций. В определенной концентрации излучение вызывает выработку антител, влияющих на возбудителей заболеваний.
Отрицательное влияние
Вред ультрафиолетовой лампы на организм человека часто превышает его полезные свойства. Если ее использование в лечебных целях выполнено неправильно, не были соблюдены меры безопасности, возможна передозировка, характеризующаяся следующими симптомами:
- Слабость.
- Апатия.
- Снижение аппетита.
- Проблемы с памятью.
- Учащенное сердцебиение.
Продолжительное пребывание на солнце вредно для кожи, глаз и иммунитета. Последствия чрезмерного загара, такие как ожоги, дерматические и аллергические высыпания исчезают через несколько суток. Ультрафиолетовая радиация медленно скапливается в организме и становится причиной опасных заболеваний.
Воздействие УФ на кожу может стать причиной эритемы. Сосуды расширяются, что характеризуется гиперемией и отеком. Накапливающиеся на теле гистамин и витамин D попадают в кровь, это способствует изменениям в организме.
Стадия развития эритемы зависит от:
- диапазона УФ-лучей;
- дозы излучения;
- индивидуальной чувствительности.
Чрезмерное облучение вызывает на коже ожог с образованием пузыря и последующим схождением эпителия.
Но вред ультрафиолета не ограничивается ожогами, его нерациональное применение может спровоцировать патологические изменения в организме.
Действие УФ на кожу
К красивому загорелому телу стремится большинство девушек. Однако кожа приобретает темный цвет под действием меланина, так организм защищается от дальнейшего излучения. Но он не убережет от более серьезного воздействия облучения:
- Фотосенсибилизация – высокая чувствительность к ультрафиолету. Минимальное его действие может спровоцировать жжение, зуд или ожог. Это в основном связано с применением лекарственных препаратов, косметических средств либо определенных продуктов питания.
- Старение – УФ-лучи проходят в глубокие слои кожи, разрушают коллагеновые волокна, теряется эластичность и появляются морщины.
- Меланома – это рак кожи, который образуется в результате частого и продолжительного пребывания на солнце. Чрезмерная доза ультрафиолета вызывает развитие злокачественных новообразований на теле.
- Базальноклеточная и чешуйчатая карцинома – это раковое образование на теле, при котором необходимо устранение пораженных участков хирургическим путем. Часто данный недуг встречается у людей, работа которых предполагает долгое пребывание на солнце.
Любой кожный дерматит, вызванный УФ-лучами может стать причиной образования онкологических заболеваний кожи.
Влияние УФ на глаза
Ультрафиолет также может отрицательно воздействовать на глаза. В результате его влияния возможно развитие следующих заболеваний:
- Фотоофтальмия и электроофтальмия. Характеризуется краснотой и припухлостью глаз, слезотечением, светобоязнью. Появляется у тех, кто часто находятся на ярком солнце в снежную погоду без солнцезащитных очков или у сварщиков, не соблюдающих правила безопасности.
- Катаракта – помутнение хрусталика. Это заболевание в основном появляется к старости. Оно развивается в результате действия солнечных лучей на глаза, которое накапливается на протяжении жизни.
- Птеригиум – разрастание конъюнктивы глаза.
Также возможны некоторые виды раковых образований на глазах и веках.
Как действует УФ на иммунную систему?
Как влияет облучение на иммунитет? В определенной дозе УФ-лучи повышают защитные функции организма, но их чрезмерное действие ослабляет иммунную систему.
Радиация излучения изменяет защитные клетки, и они теряют свою способность бороться с различными вирусами, раковыми клетками.
Защита кожи
Чтобы защититься от солнечных лучей, необходимо следовать определенным правилам:
- Находиться на открытом солнце нужно умеренно, небольшой загар оказывает фотозащитный эффект.
- Необходимо обогатить рацион питания антиоксидантами и витаминами C и E.
- Следует всегда пользоваться солнцезащитным кремом. При этом нужно выбирать средство с высоким уровнем защиты.
- Использовать ультрафиолет в лечебных целях разрешается исключительно под контролем специалиста.
- Тем, кто работает с источниками УФ, рекомендуется защищать себя маской. Это нужно при применении бактерицидной лампы, которая опасна для глаз.
- Любителям ровного загара, не следует слишком часто посещать солярий.
Чтобы защитить себя от излучения также можно использовать специальную одежду.
Противопоказания
Противопоказано подвергаться ультрафиолету следующим людям:
- тем, кто имеет слишком светлую и чувствительную кожу;
- при активной форме туберкулеза;
- детям;
- при острых воспалительных или онкологических заболеваниях;
- альбиносам;
- во время II и III стадии гипертонической болезни;
- при большом количестве родинок;
- тем, кто страдает системными или гинекологическими недугами;
- при продолжительном приеме определенных лекарственных препаратов;
- при наследственной предрасположенности к онкологическим заболеваниям кожи.
Инфракрасное излучение
Еще одна часть солнечного спектра – инфракрасное излучение, оказывающее тепловое действие. Оно используется в современной сауне.
– это маленькое деревянное помещение со встроенными инфракрасными излучателями. Под действием их волн прогревается человеческое тело.
Воздух в инфракрасной сауне не повышается свыше 60 градусов. Однако лучи прогревают тело до 4 см, когда в традиционной бане тепло проникает всего на 5 мм.
Это происходит, так как длина инфракрасных волн имеет ту же длину, что и тепловые волны, идущие от человека. Организм принимает их как свои и не сопротивляется проникновению. Температура человеческого тела поднимается до 38,5 градусов. Благодаря этому погибают вирусы и опасные микроорганизмы. Инфракрасная сауна оказывает лечебное, омолаживающее, и профилактическое действие. Она показана для любого возраста.
Перед посещением такой сауны необходимо проконсультироваться со специалистом, а также следовать технике безопасности нахождения в помещении с инфракрасными излучателями.
Видео: ультрафиолет.
УФ в медицине
В медицине существует термин «ультрафиолетовое голодание». Это происходит, когда организму не хватает солнечного света. Чтобы от этого не возникало никаких патологий, применяют искусственные источники ультрафиолета. Они помогают бороться с зимней нехваткой витамина D и поднять иммунитет.
Также такое излучение используется при лечении суставов, аллергических и дерматологических болезней.
К тому же УФ обладает следующими лечебными свойствами:
- Нормализует работу щитовидной железы.
- Улучшает функцию дыхательной и эндокринной систем.
- Повышает гемоглобин.
- Дезинфицирует помещение и медицинские инструменты.
- Снижает уровень сахара.
- Помогает при лечении гнойных ран.
Необходимо учитывать, что ультрафиолетовая лампа – это не всегда польза, возможен и большой вред.
Чтобы УФ-излучение оказывало полезный эффект на организм, следует использовать его правильно, соблюдать технику безопасности и не превышать время пребывания на солнце. Чрезмерное превышение дозы облучения опасно для здоровья и жизни человека.
Живительные лучи.
Солнце испускает три типа ультрафиолетовых лучей. Каждый из этих типов по-разному воздействует на кожу.
Большинство из нас после отдыха на пляже чувствует себя более здоровыми и полными жизни. Благодаря живительным лучам в коже образуется витамин D, который необходим для полноценного усвоения кальция. Но благотворно воздействуют на организм только небольшие дозы солнечного облучения.
Но сильно загорелая кожа это все-таки поврежденная кожа и,как следствие преждевременное старение и высокий риск развития рака кожи.
Солнечный свет - электромагнитное излучение. Кроме видимого спектра излучения в нем присутствует ультрафиолетовое, которое собственно и отвечает за загар. Ультрафиолет стимулирует способность пигментных клеток меланоцитов производить больше меланина, выполняющего защитную функцию.
Типы УФ лучей.
Существуют три типа ультрафиолетовых лучей, которые различаются по длине волны. Ультрафиолетовое излучение способно проникать сквозь эпидермис кожи в более глубокие слои. Это активизирует процесс производства новых клеток и кератина, в результате кожа становится более жесткой и грубой. Солнечные лучи, проникая сквозь дерму разрушают коллаген и приводят к изменениям толщины и текстура кожи.
Ультрафиолетовые лучи А.
Эти лучи обладают наиболее низким уровнем радиации. Раньше было принято считать, что они безвредны, однако, в настоящее время доказано, что это не так. Уровень этих лучей остается практически постоянным на протяжении всего дня и года. Они проникают даже сквозь стекло.
УФ лучи типа А проникают сквозь слои кожи, достигая дермы, повреждают основание и структуру кожи, разрушая волокна коллагена и эластина.
А-лучи способствуют появлению морщин, уменьшают эластичность кожи, ускоряют появление признаков преждевременного старения, ослабляют защитную систему кожи, делая ее более подверженной инфекциям и, возможно, онкологическим заболеваниям.
Ультрафиолетовые лучи В.
Лучи этого типа испускаются солнцем лишь в определенные времена года и часы дня. В зависимости от температуры воздуха и географической широты они обычно проникают в атмосферу в период с 10 до 16 часов.
УФ лучи типа В наносят коже более серьезный урон, так как взаимодействуют с молекулами ДНК, которые содержатся в клетках кожи. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. Излучение этого типа усиливает активность свободных радикалов, которые ослабляют естественную защитную систему кожи.
Ультрафиолетовые лучи В способствуют появлению загара и вызывают солнечные ожоги, ведут к преждевременному старению и появлению темных пигментных пятен, делают кожу грубой и шершавой, ускоряют появление морщин, могут спровоцировать развитие предраковых заболеваний и рака кожи.
Ультрафиолетовый свет — это тип электромагнитного излучения, который заставляет плакаты с черным светом светиться, отвечает за летний загар и солнечные ожоги. Однако слишком большое воздействие УФ-излучения повреждает живую ткань.
Электромагнитное излучение исходит от солнца и передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный (ЭМ) спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Общими обозначениями являются радиоволны, микроволны, инфракрасные (ИК), видимые, ультрафиолетовые (УФ), рентгеновские и гамма-лучи.
Ультрафиолетовый (УФ) свет попадает в диапазон ЭМ-спектра между видимым светом и рентгеновскими лучами. Он имеет частоты приблизительно от 8 × 1014 до 3 × 1016 циклов в секунду или герц (Гц) и длины волн около 380 нанометров (1,5 × 10-5 дюймов) до примерно 10 нм (4 × 10-7 дюймов). Согласно «Ультрафиолетовому излучению» У.С. ВМФ, УФ обычно делится на три поддиапазона:
- UVA или вблизи УФ (315-400 нм)
- UVB или средний УФ (280-315 нм)
- UVC, или далеко УФ (180-280 нм)
Ультрафиолетовый свет обладает достаточной энергией для разрушения химических связей. Из-за их более высоких энергий УФ-фотоны могут вызывать ионизацию, процесс, в котором отрываются от атомов. Полученная вакансия влияет на химические свойства атомов и заставляет их образовывать или разрушать химические связи, которых они иначе не имели бы. Это может быть полезно для химической обработки, или это может повредить материалы и живые ткани. Этот ущерб может быть полезен, например, на дезинфицирующих поверхностях, но он также может быть вредным, особенно для кожи и глаз, на которые наиболее неблагоприятно воздействуют ультрафиолетовое излучение.
Большая часть естественного света с ультрафиолетовыми лучами встречаются от солнца. Тем не менее, только около 10 процентов солнечного света является ультрафиолетовым излучением, и только около трети этого проникает в атмосферу когда достигает земли. Из солнечного света достигает экватора 95%, а 5% — ультрафиолет. Никакой измеримый УФК от солнечной радиации не достигает поверхности Земли, потому что озон, молекулярный кислород и водяной пар в верхней атмосфере полностью поглощают самые короткие длины волн УФ. Тем не менее, «ультрафиолетовое излучение широкого спектра действия является самым сильным и самым разрушительным для живых существ», согласно 13-му докладу NTP по канцерогенам».
Загар является реакцией на воздействие вредных лучей. По сути, загар обусловлен естественным защитным механизмом организма, который состоит из пигмента, называемого меланином, который продуцируется клетками в коже, называемыми меланоцитами. Меланин поглощает ультрафиолетовый свет и рассеивает его как тепло. Когда организм ощущает солнечный урон, он посылает меланин в окружающие клетки и пытается защитить их от дальнейшего повреждения. Пигмент заставляет кожу темнеть.
«Меланин — естественный солнцезащитный крем», — сказал в интервью 2013 года помощник профессора дерматологии Медицинской школы Университета Тафтса. Тем не менее, постоянное воздействие ультрафиолетового света может подавить защиту организма. Когда это происходит, происходит токсическая реакция, приводящая к солнечному ожогу. Ультрафиолетовый свет может повредить ДНК в клетках организма. Тело ощущает это разрушение и наводняет область кровью, чтобы помочь в процессе заживления. Болезненное воспаление также происходит. Обычно в течение полудня из-за переизгашения на солнце характерный красно-омарный вид солнечного ожога начинает становиться известным и ощущаться.
Иногда клетки с ДНК, мутированные солнечными лучами, превращаются в проблемные клетки, которые не умирают, а продолжают распространяться как рак. «Ультрафиолетовый свет вызывает случайные повреждения в процессе восстановления ДНК, так что клетки приобретают способность избегать смерти», — сказал Чжуан.
Результатом является рак кожи, наиболее распространенная форма рака. Люди, получающие солнечные ожоги, подвергаются значительно более высокому риску. По словам Фонда рака кожи, риск смертельной формы рака кожи, называемый меланомой, удваивается для тех, кто получил пять или более солнечных ожогов.
Для получения ультрафиолетового света был разработан ряд искусственных источников. По данным Общества физики здоровья, «искусственные источники включают в себя кабины для загара, черные огни, лампы для вулканизации, бактерицидные лампы, ртутные лампы, галогенные лампы, высокоинтенсивные газоразрядные лампы, флуоресцентные и лампы накаливания и некоторые типы лазеров».
Одним из наиболее распространенных способов получения ультрафиолетового света является пропускание электрического тока через испаренную ртуть или какой-либо другой газ. Этот тип лампы обычно используется в кабинах для загара и для дезинфекции поверхностей. Лампы также используются в черных лампах, которые вызывают флуоресцентные краски и красители. Светоизлучающие диоды (светодиоды), лазеры и дуговые лампы также доступны как ультрафиолетовые источники с различными длинами волн для промышленных, медицинских и исследовательских применений.
Многие вещества, включая минералы, растения, грибы и микробы, а также органические и неорганические химикаты, могут поглощать ультрафиолетовый свет. Поглощение заставляет электроны в материале прыгать на более высокий уровень энергии. Эти электроны могут затем вернуться к более низкому энергетическому уровню в серии меньших шагов, испуская часть своей поглощенной энергии в виде видимого света — флуоресценции. Материалы, используемые в качестве пигментов в краске или красителе, которые проявляют такую флуоресценцию, становятся ярче под солнечным светом, потому что поглощают невидимый ультрафиолетовый свет и повторно излучают его на видимых длинах волнах. По этой причине они обычно используются для знаков, спасательных жилетов и других применений, в которых важна высокая видимость.
Флуоресценцию можно также использовать для обнаружения и идентификации определенных минералов и органических материалов. Флуоресцентные зонды позволяют исследователям обнаруживать конкретные компоненты сложных биомолекулярных сборок, таких как живые клетки, с изящной чувствительностью и селективностью.
В люминесцентных лампах, используемых для освещения, ультрафиолетовый свет с длиной волны 254 нм получается вместе с синим светом, который испускается при прохождении электрического тока через пары ртути. Это ультрафиолетовое излучение невидимо, но содержит больше энергии, чем излучаемый видимый свет. Энергия ультрафиолетового света поглощается флуоресцентным покрытием внутри флуоресцентной лампы и излучается как видимый свет. Подобные трубки без того же флуоресцентного покрытия излучают ультрафиолетовый свет, который можно использовать для дезинфекции поверхностей, поскольку ионизирующее воздействие УФ-излучения может убить большинство бактерий.
Помимо солнца, есть многочисленные небесные источники ультрафиолетового света. По словам НАСА, в космосе очень крупные молодые звезды сияют большей частью своего света на ультрафиолетовых волнах. Поскольку атмосфера Земли блокирует большую часть ультрафиолетового света, особенно на более коротких длинах волн, наблюдения проводятся с использованием высотных воздушных шаров и орбитальных телескопов, оснащенных специализированными датчиками изображения и фильтрами для наблюдения в УФ-области спектра ЭМ.
По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, большинство наблюдений проводятся с использованием устройств с зарядовой связью (CCD), детекторов, предназначенных для чувствительности к коротковолновым фотонам. Эти наблюдения могут определять температуры поверхности самых горячих звезд и выявлять наличие промежуточных газовых облаков между Землей и квазарами.
Лечение рака ультрафиолетовым светом
В то время как воздействие ультрафиолетового света может привести к раку кожи, некоторые состояния кожи можно лечить с помощью ультрафиолетового света. В процедуре, называемой обработкой ультрафиолетовым излучением псоралина (PUVA), пациенты принимают лекарство или наносят лосьон, чтобы сделать кожу чувствительной к свету. Затем на кожу светится ультрафиолетовый свет. PUVA используется для лечения лимфомы, экземы, псориаза и витилиго.
Это может показаться нелогичным для лечения рака кожи тем же, что и вызвало его, но PUVA может быть полезным из-за воздействия ультрафиолетового света на продукцию клеток кожи. Это замедляет рост, который играет важную роль в развитии болезни.
Ключ к происхождению жизни?
Недавние исследования показывают, что ультрафиолетовый свет, возможно, сыграл ключевую роль в происхождении жизни на Земле, особенно в происхождении РНК. В статье 2017 года в журнале Astrophysics Journal авторы исследования отмечают, что звезды красного карлика не могут излучать достаточный ультрафиолетовый свет чтобы начать биологические процессы, необходимые для образования рибонуклеиновой кислоты необходимой для всех форм жизни на Земле. Исследование также предполагает, что этот вывод может помочь в поиске жизни в других частях Вселенной.
Содержащиеся в атмосфере Земли кислород, солнечные лучи и вода являются основными условиями способствующими продолжению жизни на планете. Исследователями давно доказано, что интенсивность и спектр солнечной радиации в вакууме, существующем в космосе, остается неизменным.
На Земле же интенсивность ее воздействия, которую мы называем ультрафиолетовым излучением, зависит от множества факторов. В их числе: время года, географическое расположение местности над уровнем моря, толщина озонового слоя, облачность, а также уровень концентрации промышленных и естественных примесей в воздушных массах.
Ультрафиолетовые лучи
Солнечный свет доходит до нас в двух диапазонах. Человеческий глаз способен различить только один из них. В невидимом для людей спектре и находятся ультрафиолетовые лучи. Что они представляют собой? Это не что иное, как электромагнитные волны. Длина ультрафиолетового излучения находится в диапазоне от 7 до 14 нм. Такие волны несут на нашу планету огромнейшие потоки тепловой энергии, из-за чего их нередко называют тепловыми.
Под ультрафиолетовым излучением принято понимать обширный спектр, состоящий из электромагнитных волн с диапазоном, условно разделенным на дальние и ближние лучи. Первые из них считаются вакуумными. Их полностью поглощают верхние слои атмосферы. В условиях Земли их генерирование возможно только в условиях вакуумных камер.
Что касается ближних ультрафиолетовых лучей, их делят на три подгруппы, классифицируя по диапазонам на:
Длинные, находящиеся в пределах от 400 до 315 нанометров;
Средние - от 315 до 280 нанометров;
Короткие - от 280 до 100 нанометров.
Измерительные приборы
Как человек определяет ультрафиолетовое излучение? На сегодняшний день существует множество специальных устройств, разработанных не только для профессионального, но и для бытового применения. С их помощью измеряется интенсивность и частота, а также величина полученной дозы УФ-лучей. Результаты позволяют оценить их возможный вред для организма.
Источники ультрафиолета
Основным «поставщиком» УФ-лучей на нашей планете является, разумеется, Солнце. Однако на сегодняшний день человеком изобретены и искусственные источники ультрафиолета, которыми являются специальные ламповые приборы. Среди них:
Ртутно-кварцевая лампа высокого давления, способная работать в общем диапазоне от 100 до 400 нм;
Люминисцентная витальная лампа, генерирующая волны длиной от 280 до 380 нм, максимальный пик ее излучения находится между значениями 310 и 320 нм;
Безозоннные и озонные бактерицидные лампы, вырабатывающие ультрафиолетовые лучи, 80% которых составляет в длину 185 нм.
Польза УФ-лучей
Аналогично естественному ультрафиолетовому излучению, идущему от Солнца, свет, вырабатываемый специальными приборами, воздействует на клетки растений и живых организмов, изменяя их химическую структуру. Сегодня исследователям известны лишь некоторые разновидности бактерий, способные существовать без этих лучей. Остальные же организмы, попав в условия, где отсутствует ультрафиолетовое излучение, непременно погибнут.
УФ-лучи способны оказать значимое влияние на происходящие метаболические процессы. Они повышают синтез серотонина и мелатонина, что оказывает положительное влияние на работу центральной нервной, а также эндокринной системы. Под действием ультрафиолетового света активизируется выработка витамина D. А это главный компонент, способствующий усвоению кальция и препятствующий развитию остеопороза и рахита.
Вред УФ-лучей
Губительное для живых организмов жесткое ультрафиолетовое излучение не пропускают на Землю озоновые слои, находящиеся в стратосфере. Однако лучи, находящиеся в среднем диапазоне, доходящие до поверхности нашей планеты, способны вызвать:
Ультрафиолетовую эритему - сильный ожог кожи;
Катаракту - помутнение хрусталика глаза, которое приводит к слепоте;
Меланому - рак кожи.
Кроме этого, ультрафиолетовые лучи способны оказать мутагенное действие, вызвать сбои в работе иммунных сил, что становится причиной возникновения онкологических патологий.
Поражение кожи
Ультрафиолетовые лучи порой вызывают:
- Острые повреждения кожи. Их возникновению способствуют высокие дозы солнечной радиации, содержащие лучи среднего диапазона. Они воздействуют на кожу в течение короткого времени, вызывая при этом эритему и острый фотодерматоз.
- Отсроченное повреждение кожи. Оно возникает после длительного облучения длинноволновыми УФ-лучами. Это хронические фотодерматиты, солнечная геродермия, фотостарение кожи, возникновение новообразований, ультрафиолетовый мутагенез, базальноклеточный и плоскоклеточный рак кожи. В этом списке находится и герпес.
Как острые, так и отсроченные повреждения порой получают при чрезмерных увлечениях искусственными солнечными ваннами, а также при посещениях тех соляриев, которые используют несертифицированное оборудование или где не проводятся мероприятия по калибровке УФ-ламп.
Защита кожи
Человеческое тело, при ограниченном количестве любых солнечных ванн, способно справиться с ультрафиолетовым излучением самостоятельно. Дело в том, что свыше 20 % таких лучей может задержать здоровый эпидермис. На сегодняшний день защита от ультрафиолета, чтобы избежать возникновения злокачественных образований, потребует:
Ограничения времени пребывания на солнце, что особенно актуально в летние полуденные часы;
Ношение легкой, но в то же время закрытой одежды;
Подбор эффективных солнцезащитных кремов.
Использование бактерицидных свойств ультрафиолета
УФ-лучи способны убить грибок, а также другие микробы, которые находятся на предметах, поверхности стен, пола, потолков и в воздухе. В медицине широко используются эти бактерицидные свойства ультрафиолетового излучения, и применение им находится соответствующее. Специальные лампы, вырабатывающие УФ-лучи, обеспечивают стерильность хирургических и манипуляционных помещений. Однако ультрафиолетовое бактерицидное излучение используется медиками не только в целях борьбы с различными внутрибольничными инфекциями, но и как один из методов устранения многих заболеваний.
Светолечение
Применение ультрафиолетового излучения в медицине представляет собой один из методов избавления от различных заболеваний. В процессе такого лечения производится дозированное воздействие УФ-лучей на организм пациента. При этом применение ультрафиолетового излучения в медицине для этих целей становится возможным благодаря использованию специальных ламп фототерапии.
Подобная процедура проводится для устранения заболеваний кожи, суставов, органов дыхания, периферической нервной системы, женских половых органов. Назначается ультрафиолет для ускорения процесса заживления ран и для профилактики рахита.
Особенно эффективно применение ультрафиолетового излучения в терапии псориаза, экземы, витилиго, некоторых видов дерматита, пруриго, порфирии, прурита. Стоит отметить, что такая процедура не требует анестезии и не вызывает у больного неприятных ощущений.
Применение лампы, производящей ультрафиолет, позволяет получить хороший результат при лечении больных, прошедших тяжелые гнойные операции. В этом случае пациентам также помогает бактерицидное свойство этих волн.
Применение УФ-лучей в косметологии
Инфракрасные волны активно используются и в сфере поддержания красоты и здоровья человека. Так, применение ультрафиолетового бактерицидного излучения необходимо для обеспечения стерильности различных помещений и приборов. Например, это может быть профилактика инфицирования маникюрных инструментов.
Применение ультрафиолетового излучения в косметологии - это, конечно же, солярий. В нем с помощью специальных ламп клиенты могут получить загар. Он прекрасно защищает кожу от возможных последующих ожогов солнца. Именно поэтому косметологи рекомендуют перед поездкой в жаркие страны или на море пройти несколько сеансов в солярии.
Необходимы в косметологии и специальные УФ-лампы. Благодаря им происходит быстрая полимеризация особого геля, используемого для маникюра.
Определение электронных структур предметов
Находит свое применение ультрафиолетовое излучение и в физических исследованиях. С его помощью определяют спектры отражения, поглощения и испускания в УФ-области. Это позволяет уточнить электронную структуру ионов, атомов, молекул и твердых тел.
УФ-спектры звезд, Солнца и других планет несут в себе информацию о тех физических процессах, которые происходят в горячих областях исследуемых космических объектов.
Очистка воды
Где еще используются УФ-лучи? Находит свое применение ультрафиолетовое бактерицидное излучение для обеззараживания питьевой воды. И если ранее с этой целью использовался хлор, то на сегодняшний день уже достаточно хорошо изучено его негативное влияние на организм. Так, пары этого вещества способны вызвать отравление. Попадание в организм самого хлора провоцирует возникновение онкологических заболеваний. Именно поэтому для обеззараживания воды в частных домах все чаще стали применяться ультрафиолетовые лампы.
Применяются УФ-лучи и в бассейнах. Ультрафиолетовые излучатели для устранения бактерий используют в пищевой, химической и фармакологической промышленности. Этим сферам также нужна чистая вода.
Обеззараживание воздуха
Где еще человек использует УФ-лучи? Применение ультрафиолетового излучения для обеззараживания воздуха также становится все более распространенным в последнее время. Рециркуляторы и излучатели устанавливаются в местах массового скопления людей, таких, как супермаркеты, аэропорты и вокзалы. Использование УФИ, воздействующего на микроорганизмы, позволяет провести обеззараживание среды их обитания в самой высокой степени, вплоть до 99,9 %.
Бытовое применение
Кварцевые лампы, создающие УФ-лучи, уже на протяжении многих лет дезинфицируют и очищают воздух в поликлиниках и больницах. Однако в последнее время все чаще находит свое применение ультрафиолетовое излучение в быту. Оно весьма эффективно для ликвидации органических загрязнителей, например, грибка и плесени, вирусов, дрожжей и бактерий. Эти микроорганизмы особенно быстро распространяются в тех помещениях, где люди по различным причинам надолго плотно закрывают окна и двери.
Использование бактерицидного облучателя в бытовых условиях становится целесообразным при малой площади жилья и большой семье, в которой есть маленькие дети и домашние питомцы. Лампа с УФ-излучением позволит периодически дезинфицировать комнаты, сводя к минимуму риск возникновения и дальнейшей передачи заболеваний.
Используются подобные приборы и туберкулезниками. Ведь такие больные не всегда проходят лечение в стационаре. Находясь дома, им требуется обеззараживать свое жилище, применяя в том числе и ультрафиолетовое излучение.
Применение в криминалистике
Учеными разработана технология, позволяющая обнаружить минимальные дозы взрывчатых веществ. Для этого используется прибор, в котором производится ультрафиолетовое излучение. Такое устройство способно определить наличие опасных элементов в воздухе и в воде, на ткани, а также на коже подозреваемого в преступлении.
Также находит свое применение ультрафиолетовое и инфракрасное излучение при макросъемке объектов с невидимыми и маловидимыми следами совершенного правонарушения. Это позволяет криминалистам изучить документы и следы выстрела, тексты, подвергшиеся изменениям в результате их залития кровью, чернилами и т.д.
Другие применения УФ-лучей
Ультрафиолетовое излучение используется:
В шоу-бизнесе для создания световых эффектов и освещения;
В детекторах валют;
В полиграфии;
В животноводстве и сельском хозяйстве;
Для ловли насекомых;
В реставрации;
Для проведения хроматографического анализа.