Несмотря на простоту реализуемой логической функции способов создания инверторов немного (рис. 2.2).
Рис. 2.2. Схемы реализации инверсии на различных элементах: а – инверторе; б – ИЛИ-НЕ; в – И-НЕ; г – импликаторе; д – равнозначности; е – запрета; ж – исключающее ИЛИ
Собственно инвертор и элементы ИЛИ-НЕ и И-НЕ не требуют наличия дополнительных опорных напряжений. Импликатор и элемент равнозначности нуждаются в нулевом логическом уровне, а элементы запрета и исключающее ИЛИ – в уровне единицы.
Способов реализации дизъюнкции (рис. 2.3) значительно меньше по сравнению с ранее рассмотренными заменами.
Отметим, что проще всего заменить дизъюнкторы элементами ИЛИ-НЕ и импликаторами, которые включают в себя операцию дизъюнкции в качестве одной из основных. В этом случае для замены требуется всего два элемента (рис. 2.3 б , в ). В случае же использования элементов И-НЕ и запрета для замены дизъюнктора необходимо иметь три элемента (рис. 2.3 г , д ).
По составу и структуре схемы конъюнкторов (рис. 2.4) похожи на схемы, показанные на рис. 2.3, только здесь операция дизъюнкции заменена на конъюнкцию, и наоборот.
Рис. 2.3. Схемы реализации дизъюнкции на различных элементах: а – дизъюнкторе; б – импликаторах; в – ИЛИ-НЕ; г – И-НЕ; д – запрета
Рис. 2.4. Схемы реализации конъюнкции на различных элементах: а – конъюнкторе; б – запрета; в – И-НЕ; г – ИЛИ-НЕ; д – импликаторах
Для импликаторов вариантов замены еще меньше (рис.2.5), чем для конъюнкторов. Примечательно то, что даже операция дизъюнкции в элементе ИЛИ-НЕ «не выручает», поскольку они требуются в количестве трех штук.
В схемотехнике ТТЛ очень часто используются сложные логические элементы И-ИЛИ и И-ИЛИ-НЕ, которые позволяют реализовывать логические функции, представленные в прямой и (или) инверсной дизъюнктивных нормальных формах. Показанный на рис. 2.6 а логический элемент 2-4-2-3И - 4ИЛИ - НЕ способен производить следующую логическую операцию:
Рис. 2.5. Схемы реализации импликации на различных элементах: а – импликаторе; б – ИЛИ-НЕ; в – И-НЕ; г – запрета
Рис. 2.6. Варианты логических элементов И-ИЛИ и И-ИЛИ-НЕ: а – 2-4-2-3И – 4ИЛИ – НЕ; б - 2-2-2-2И – 4ИЛИ/2-2-2-2И – 4ИЛИ-НЕ с возможностью расширения по ИЛИ; в – два четырехвходовых логических расширителя по ИЛИ
В других микросхемах, представляющих собой комбинированные элементы, используются не только расширители по ИЛИ, но и прямые и инверсные выходы одновременно (рис. 2.6 б ). Микросхемы, являющиеся расширителями по ИЛИ (рис. 2.6 в ), имеют дополнительные выходы коллектора (К) и эмиттера (Э), подключаемые к соответствующим клеммам основного элемента И-ИЛИ/И-ИЛИ-НЕ (см. рис. 2.6 б ).
Показанные на рис. 2.6 варианты не исчерпывают список логических элементов И-ИЛИ и И-ИЛИ-НЕ, выпускаемых промышленностью. Их разновидности приведены в соответствующих справочниках.
Рассмотренные элементы позволяют получать устройства различной сложности и реализовывать функции, представленные в дизъюнктивной нормальной или инвертированной форме, что согласуется с операцией минимизации по нулям.
Широко применяются эти элементы с более простыми интегральными микросхемами: инверторами, элементами И-НЕ и др.
В качестве примера рассмотрим схемы реализации функций равнозначности и неравнозначности на основе элементов И-ИЛИ-НЕ и инверторов (рис.2.7). Логика построения этих схем следует из взаимной инверсности функций равнозначности и неравнозначности.
Рис. 2.7. Схемы устройств, исключающее ИЛИ (а ) и равнозначности (б ) на основе инверторов и элементов И-ИЛИ-НЕ
Представляет интерес и вариант реализации функции равнозначности с применением элемента И-НЕ (рис. 2.8).
Рис. 2.8. Схема устройства равнозначности на основе элементов И-НЕ и И-ИЛИ-НЕ
Обоснование этой схемы следует из преобразований основной формулы равнозначности с помощью формул Моргана
Логические элементы, работают как самостоятельные элементы в виде микросхем малой степени интеграции, так и входят в виде компонентов в микросхемы более высокой степени интеграции. Таких элементов можно насчитать не один десяток.
Но сначала расскажем только о четырех из них - это элементы И, ИЛИ, НЕ, И-НЕ. Основными элементами являются первые три, а элемент И-НЕ это уже комбинация элементов И и НЕ. Эти элементы можно назвать «кирпичиками» цифровой техники. Для начала следует рассмотреть, какова же логика их действия?
Вспомним первую часть статьи о цифровых микросхемах. Там было сказано, что напряжение на входе (выходе) микросхем в пределах 0…0,4В это уровень логического нуля, или напряжение низкого уровня. Если же напряжение в пределах 2,4…5,0В, то это уровень логической единицы или напряжение высокого уровня.
Рабочее состояние микросхем серии К155 и других микросхем с напряжением питания 5В характеризуется именно такими уровнями. Если на выходе микросхемы напряжение находится в диапазоне 0,4…2,4В (например 1,5 или 2,0В), то можно уже задуматься о замене данной микросхемы.
Практический совет: чтобы убедиться, что неисправна по выходу именно эта микросхема, следует отсоединить от нее вход следующей за ней микросхемы (или несколько входов, подключенных к выходу данной микросхемы). Эти входы могут просто «подсаживать» (перегружать) микросхему по выходу.
Условные графические обозначения
Условные графические обозначения представляют собой прямоугольник, содержащий входные и выходные линии. Входные линии элементов располагаются слева, а выходные справа. То же касается и целых листов со схемами: с левой стороны все сигналы входные, с правой выходы. Это как в книжке строка, - слева направо, так будет проще запомнить. Внутри прямоугольника находится условный символ, обозначающий функцию, выполняемую элементом.
Рассмотрение логических элементов начнем с элемента И.
Рисунок 1. Логический элемент И
Его графическое обозначение показано на рисунке 1а. Условным обозначением функции И служит английский символ «&», который в английском языке заменяет союз «и», ведь все-таки, вся эта «лженаука» изобреталась в проклятом буржуинстве.
Входы элемента обозначены как X с индексами 1 и 2, а выход, как выходная функция, буквой Y. Просто, как в школьной математике, например, Y = K*X или, в общем случае, Y = f(x) . Входов у элемента может быть и больше, чем два, что ограничивается только сложностью решаемой задачи, но, выход может быть только один.
Логика работы элемента следующая: напряжение высокого уровня на выходе Y будет лишь тогда, когда И-на входе X1 И-на входе X2 будет напряжение высокого уровня. Если входов у элемента будет 4 или 8, то указанное условие (наличие высокого уровня), должно выполняться на всех входах: И-на входе 1, И-на входе 2, И-на входе3 …..И-на входе N. Лишь в этом случае на выходе будет также высокий уровень.
Для того, чтобы было проще разобраться в логике работы элемента И, на рисунке 1б представлен его аналог в виде контактной схемы. Здесь выход элемента Y представлен лампой HL1. Если лампа светится, то это соответствует высокому уровню на выходе элемента И. Часто такие элементы называют 2-И, 3-И, 4-И, 8-И. Первая цифра указывает на количество входов.
В качестве входных сигналов X1 и X2 используются обычные «звонковые» кнопки без фиксации. Разомкнутое состояние кнопок это состояние низкого уровня, а замкнутое, естественно, высокого. В качестве источника питания на схеме показана гальваническая батарея. Пока кнопки находятся в незамкнутом состоянии, лампа, конечно, не светит. Лампа включится лишь только тогда, когда будут нажаты сразу обе кнопки, т.е. И-SB1, И-SB2. Такова логическая связь между входными и выходным сигналом элемента И.
Наглядное представление о работе элемента И можно получить глядя на временную диаграмму, показанную на рисунке 1в. Сначала сигнал высокого уровня появляется на входе X1, но на выходе Y ничего не произошло, там по-прежнему сигнал низкого уровня. На входе X2 сигнал появляется с некоторой задержкой относительно первого входа, и на выходе Y появляется сигнал высокого уровня.
Когда на входе X1 сигнал принимает низкий уровень, на выходе также устанавливается сигнал низкого уровня. Или, если сказать по-другому, сигнал высокого уровня на выходе удерживается до тех пор, пока на обоих входах присутствуют сигналы высокого уровня. То же самое можно сказать и о более многовходовых элементах И: если это будет 8-И, то чтобы на выходе получить высокий уровень, высокий же уровень должен удерживаться сразу на всех восьми входах.
Чаще всего в справочной литературе состояние выхода логических элементов в зависимости от входных сигналов приводится в виде таблиц истинности. Для рассматриваемого элемента 2-И таблица истинности приведена на рисунке 1г.
Таблица несколько похожа на таблицу умножения, только поменьше. Если внимательно ее изучить, можно заметить, что высокий уровень на выходе будет только тогда, когда на обоих входах присутствует напряжение высокого уровня или, что то-же самое, логической единицы. Кстати, сравнение таблицы истинности с таблицей умножения далеко не случайно: все таблицы истинности электронщики знают, как говорится, назубок.
Также функцию И можно описать при помощи . Для двухвходового элемента формула будет выглядеть следующим образом: Y = X1*X2 или другая форма записи Y = X1^X2 .
Следующим мы рассмотрим логический элемент ИЛИ.
Рисунок 2. Логический элемент ИЛИ
Его графическое обозначение похоже на только что рассмотренный элемент И, за исключением того, что вместо знака &, обозначающего функцию И, внутри прямоугольника вписана цифра 1, как показано на рисунке 2а. В данном случае она обозначает функцию ИЛИ. Слева расположены входы X1 и X2, которых, как и в случае функции И может быть и больше, а справа выход, обозначенный буквой Y.
В виде формулы булевой алгебры функция ИЛИ записывается так Y = X1 + X2.
Согласно этой формуле Y будет истинным тогда, когда ИЛИ на входе X1, ИЛИ на входе X2, ИЛИ на обоих входах сразу будет высокий уровень.
Понять только что сказанное поможет контактная схема, представленная на рисунке 2б: нажатие на любую из кнопок (высокий уровень) или на обе кнопки сразу, приведет к свечению лампочки (высокий уровень). В данном случае кнопки это входные сигналы X1 и X2, а лампочка выходной сигнал Y. Чтобы сказанное было проще запомнить, на рисунках 2в и 2г приведены временная диаграмма и таблица истинности соответственно: достаточно проанализировать работу показанной контактной схемы с диаграммой и таблицей, как все вопросы исчезнут.
Логический элемент НЕ, инвертор
Как говорил один преподаватель, - в цифровой технике нет ничего сложнее инвертора. Пожалуй, так и есть на самом деле.
В алгебре логики операция НЕ называется инверсией, что в переводе с английского означает отрицание, то есть уровень сигнала на выходе с точностью до наоборот соответствует входному сигналу, что в виде формулы выглядит как Y = /X
(Косая черта перед X обозначает собственно инверсию. Обычно вместо косой используется подчеркивание сверху, хотя вполне допустимо и такое обозначение.).
Условное графическое обозначение элемента НЕ представляет собой квадрат или прямоугольник, внутри которого вписана цифра 1.
Рисунок 3. Инвертор
В данном случае она обозначает, что этот элемент - инвертор. Он имеет всего один вход X и выход Y. Линия выхода начинается маленьким кружком, собственно который и говорит о том, что этот элемент инвертор.
Как только что было сказано - инвертор самая сложная схема цифровой техники. И это подтверждает его контактная схема: если до этого было достаточно лишь только кнопок, то теперь к ним добавилось реле. Пока кнопка SB1 не нажата (логический ноль на входе) реле K1 обесточено и его нормально-замкнутые контакты включают лампочку HL1, что соответствует логической единице на выходе.
Если же нажать кнопку (подать на вход логическую единицу), то реле включится, контакты K1.1 разомкнутся, лампочка погаснет, что соответствует логическому нулю на выходе. Сказанное подтверждают временная диаграмма на рисунке 3в и таблица истинности на рисунке 3г.
Логический элемент И-НЕ есть не что иное, как сочетание логического элемента И с элементом НЕ.
Рисунок 4. Логический элемент И-НЕ
Поэтому на его условном графическом обозначении присутствует знак & (логическое И), а линия выхода начинается с кружочка, указывающего на наличие в составе элемента инвертора.
Контактный аналог логического элемента показан на рисунке 4б, и, если присмотреться, очень похож на аналог инвертора показанного на рисунке 3б: лампочка включена также через нормально-замкнутые контакты реле К1. Собственно это и есть инвертор. Реле управляется кнопками SB1 и SB2, которые соответствуют входам X1 и X2 логического элемента И-НЕ. На схеме видно, что реле будет включено только тогда, когда будут нажаты обе кнопки: в данном случае кнопки выполняют функцию & (логическое И). При этом лампа на выходе погаснет, что соответствует состоянию логического нуля.
Если же не нажаты обе кнопки, или хотя бы одна из них, то реле отключено, и лампочка на выходе схемы горит, что соответствует уровню логической единицы.
Из всего сказанного можно сделать следующие выводы:
Во-первых, если хотя бы на одном входе присутствует логический нуль, то на выходе будет логическая единица. То же состояние на выходе будет и в случае, когда нули присутствуют сразу на обоих входах. Это весьма ценное свойство элементов И-НЕ: если соединить оба входа, то элемент И-НЕ становится инвертором, - просто выполняет функцию НЕ. Такое свойство позволяет не ставить специальную микросхему, содержащую сразу шесть инверторов, когда требуется всего один или два.
Во-вторых, нуль на выходе можно получить только в том случае, если «собрать» на всех входах единички. В данном случае уместно было бы назвать рассматриваемый логический элемент 2И-НЕ. Двойка говорит о том, что этот элемент двухвхододый. Практически во всех сериях микросхем существуют также 3-х, 4-х и восьмивходовые элементы. При этом каждый из них имеет только один выход. Однако, базовым элементом во многих сериях цифровых микросхем считается элемент 2И-НЕ.
При различных вариантах соединения входов можно получить еще одно чудесное свойство. Например, соединив между собой три входа восьмивходового элемента 8И-НЕ получим элемент 6И-НЕ. А если соединить вместе все 8 входов, получится просто инвертор, о чем было сказано чуть выше.
На этом знакомство с логическими элементами закончим. В следующей части статьи будут рассмотрены простейшие опыты с микросхемами, внутреннее устройство микросхем, простые устройства, например генераторы импульсов.
Борис Аладышкин
В цифровой схемотехнике цифровой сигнал - это сигнал, который может принимать два значения, рассматриваемые как логическая "1" и логический "0".
Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ - разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.
Логические схемы реализуются на логических элементах: "НЕ", "И", "ИЛИ", "И-НЕ", "ИЛИ-НЕ", "Исключающее ИЛИ" и "Эквивалентность". Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе . Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.
Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).
На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.
Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.
Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:
- трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
- четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).
Рассмотрим построение (синтез) логических схем
- в булевом базисе "И", "ИЛИ", "НЕ" (в предпоследнем параграфе);
- в также распространённых базисах "И-НЕ" и "ИЛИ-НЕ" (в последнем параграфе).
Задача анализа логических схем
Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.
- Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
- Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра - номер яруса, а остальные цифры - порядковый номер элемента в ярусе.
- Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
- Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.
Пример 1.

Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:
x , y , z :
x | y | z | f | ||||
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Продолжаем искать булеву функцию логической схемы вместе
Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:
Теперь запишем все функции, подставляя входные переменные x , y , z :
В итоге получим функцию, которую реализует на выходе логическая схема:
.
Таблица истинности для данной логической схемы:
x | y | z | f | ||
1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная - самая нижняя - пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:
Теперь запишем все функции, подставляя входные переменные x , y , z :
В итоге получим функцию, которую реализует на выходе логическая схема:
.
Таблица истинности для данной логической схемы:
x | y | z | f | ||
1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
Задача синтеза логических схем в булевом базисе
Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.
Каждой дизъюнкции (логической сумме) соответствует элемент "ИЛИ", число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент "И", число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент "НЕ".
Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.
Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности.
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ
Общие сведения.
Выше отмечалось, что логические функции и их аргументы принимают значение лог.0 и лог.1. При этом следует иметь в виду, что в устройствах лог.0 и лог.1 соответствует напряжению определенного уровня (либо формы). Наиболее часто используется два способа физического представления лог.0 и лог.1: потенциальный и имульсный .
При потенциальной форме (рис. 2.1,а и 2.1,б) для представления лог.0 и лог.1 используется напряжение двух уровней: высокий уровень соответствует лог.1 (уровень лог.1 ) и низкий уровень соответствует лог.0 (уровень лог.0 ). Такой способ представления значений логических величин называется положительной логикой. Относительно редко используют так называемую отрицательную логику, при которой лог.1 ставят в соответствии низкий уровень напряжения, а лог.0 - высокий уровень. В дальнейшем, если это не оговаривается особо, будем пользоваться только положительной логикой.
При импульсной форме лог.1 соответствует наличие импульса, логическому 0 - отсутствие импульса (рис.2.1, в).
Заметим, что, если при потенциальной форме соответствующая сигналу информация (лог.1 либо лог.0) может быть определена практически в любой момент времени, то при импульсной форме соответствие между уровнем напряжения и значением логической величины устанавливается в определенные дискретные моменты времени (так называемые тактовые моменты времени), обозначенные на рис.2.1,в целыми числами t = 0, 1, 2,...
Общие обозначения логических элементов.
Логические элементы базиса И, ИЛИ, НЕ на дискретных компонентах.
диодный элемент ИЛИ (сборка)
Логический элемент ИЛИ, выполняемый на диодах, имеет два и более входов и один выход. Элемент может работать как при потенциальном, так и при импульсном представлении логических величин.
На рис. 2.2,а приведена схема диодного элемента для работы с потенциалами и импульсами положительной полярности. При использовании отрицательной логики и отрицательных потенциалов, либо импульсов отрицательной полярности необходимо изменить полярность включения диодов, как показано на рисунке 2.2,б.
Рассмотрим работу схемы на рис. 2.2,а. Если импульс (либо высокий потенциал) действует лишь на одном входе, то открывается подключенный к этому входу диод и импульс (либо высокий потенциал) передается через открытый диод на резистор R. При этом на резистре R образуется напряжение той полярности, при которой диоды в цепях остальных входов оказываются под действием запирающего напряжения.
рис. 2.2.
Если сигналы, соответствующие лог.1, одновременно поступают на несколько входов, то при строгом равенстве уровней этих сигналов откроются все диоды, подключенные к этим входам.
Если сопротивление открытого диода мало по сравнению с сопротивлением резистора R, уровень выходного напряжения будет близок к уровню входного сигнала независимо от того, на скольких входах одновременно действует сигнал лог.1.
Заметим, что если уровни входных сигналов разнятся, то открывается лишь диод того из входов, уровень сигнала на котором имеет наибольшее значение. На резисторе R образуется напряжение, близкое к наибольшему из напряжений, действующих на входах. Все остальные диоды закрываются, отключая от выхода источники с малым уровнем сигнала.
Таким образом, на выходе элемента образуется сигнал, соответствующий лог.1, если хотя бы на одном из входов действует лог.1. Следовательно, элемент реализует операцию дизъюнкции (операцию ИЛИ).
Рассмотрим факторы, влияющие на форму выходного импульса. Пусть элемент имеет n входов и на один из них подан прямоугольный импульс напряжения от источника с выходным сопротивлением R вых. Подключенный к этому входу диод открыт и представляет собой малое сопротивление. Отсальные диоды закрыты, емкости С д их p-n - перходов через выходные сопротивления подключенных ко входам источников оказываются включенными параллельно выходу элемента. Вместе с емкостью нагрузки и монтажа С н образуется некоторая эквивалентная емкость С эк = С д + (n-1)С д, подключенная параллельно R (рис. 2.3,а).
В момент подачи на вход импульса из-за емкости С эк напряжение на выходе не может возрасти скачком; оно растет по экспоненциальному закону с постоянной времени
(так как R вых < R), стремясь к значению U вх R/(R + R вых).
рис. 2.3.
В момент окончания входного импульса напряжение на заряженном конденсаторе С эк не может упасть скачком; оно снижается по экспоненциальному закону с постоянной времени (в это время все диоды оказываются закрытыми); т.к. длительность среза выходного импульса больше длительности его фронта (рис.2.3,б). Подача следующего импульса на вход элемента допускается лишь после того, как остаточное напряжение на выходе от действия предыдущего импульса снизится до определенного малого значения. Поэтому медленный спад выходного напряжения вызывает необходимость увеличения тактового интервала и, следовательно, является причиной снижения быстродействия.
диодный элемент И (схема совпадения)
Логический элемент И имеет один выход и два или более входов. Диодный элемент И может работать с информацией, представленной как в потенциальной, так и в импульсной форме.
На рис.2.4,а приведена схема, используемая при положительных значениях входных напряжений. При использовании отрицательной логики и отрицательных входных напряжений, либо импульсов отрицательной полярности необходимо изменить полярность напряжения источника питания и полярность включения диодов (рис. 2.4,б).
рис. 2.4.
Пусть на одном из входов цепи на рис.2.4,а действует низкий уровень напряжения, соответствующий уровню лог.0. Ток будет замыкаться в цепи от источника E через резистор R, открытый диод и источник низкого входного напряжения. Так как сопротивление открытого диода мало, то низкий потенциал со входа через открытый диод будет передаваться на выход. Диоды, подключенные к остальным входам, на который действует высокий уровень напряжения, оказываются закрытыми. Действующее на диоде напряжение можно определить суммированием напряжений при обходе внешней по отношению к диоду цепи от его анода к катоду. При таком обходе напряжение на диоде оказывается равным U д = U вых - U вх. Таким образом, выходное напряжение, прикладываемое к анодам диодов, является для них положительным, стремящимся открыть диоды; входное напряжение, прикладываемое к катоду, - отрицательным, стремящимся закрыть диод. И если u вых < u вх, то U д отрицательно и диод закрыт. Именно поэтому, когда на выходе элемента низкий потенциал (уровень лог.0), а на входе высокий потенциал (уровень лог.1), подключенный к этому входу диод оказывается закрытым.
Таким образом, если хотя бы на одном из входов действует напряжение низкого уровня (лог.0), то на выходе элемента образуется напряжение низкого уровня (лог.0).
Пусть на всех входах действуют напряжения высокого уровня (лог.1). Они могут несколько отличаться по значению. При этом будет открыт тот диод, который подключен ко входу с более низким напряжением. Это напряжение через диод будет передаваться на выход. Остальные диоды будут практически закрыты. На выходе установится напряжение высокого уровня (лог.1).
Следовательно, на выходе элемента устанавливается напряжение уровня лог.1 в том и только в том случае, когда на всех входах действует напряжение уровня лог.1. Таким образом, убеждаемся в том, что элемент выполняет логическую операцию И.
Рассмотрим форму выходного импульса (рис.2.5).
Будем считать, что к выходу подключен некоторый эквивалентный емкостной элемент С эк, емкость которого включает в себя емкости нагрузки, монтажа и закрытых диодов. В момент подачи импульса напряжения одновременно на все входы напряжение на С эк (на выходе элемента) не может возрасти скачком. Все диоды вначале оказываются закрытыми входными напряжениями, являющимися для диодов отрицательными. Поэтому источники входных сигналов будут отключены от С эк. Конденсатор С эк заряжается от источника Е через резистор R. Напряжение на конденсаторе (а значит и на выходе элемента) растет по экспоненциальному закону с постоянной времени (рис. 2.5,б). В момент времени, когда u вых превысит минимальное из входных напряжений, откроется соответствующий диод и рост u вх прекратится. Ток от источника Е, ранее замыкавшийся через С эк, переключается в цепь открытого диода.
рис. 2.5.
В момент окончания входных импульсов все диоды открываются положительным для них напряжением u вых. Происходит относительно быстрый разряд С эк через открытые диоды и малые выходные сопротивления источников входных сигналов. Напряжение на выходе снижается по экспоненциальному закону с малой постоянной времени .
Сравнение форм выходных импульсов диодных элементов ИЛИ и И показывает, что в элементе ИЛИ оказывается более растянутым срез импульса, в элементе И - его фронт.
транзисторный элемент НЕ (инвертор)
рис. 2.6.
Операция НЕ может быть реализована ключевым элементом, представленным на рис. 2.6,а. Следует иметь в виду, что этот элемент выполняет операцию НЕ только при потенциальной форме представления логических величин. При низком уровне входного сигнала, соответствующем лог.0, транзистр закрыт, на его выходе устанавливается напряжение высокого уровня Е (лог1). И наоборот, при высоком уровне входного напряжения (уровне лог.1) транзистр насыщен, на его выходе устанавливается напряжение, близкое к нулю (уровня лог.0). Графики входных и выходных напряжений представлены на рис. 2.6,б.
Интегральные логические элементы базиса И-НЕ и их параметры.
Интегральные логические элементы используются при потенциальной форме представления логических величин.
Схема интегрального элемента И-НЕ типа ДТЛ показана на рис. 2.7. Элемент может быть разбит на две последовательно включенные функциональные части. Входные величины подаются на часть, представляющую собой диодный логический элемент И. Вторая часть элемента, выполненная на транзисторе, представляет собой инвертор (выполняющий операцию НЕ). Таким образом, в элементе последовательно выполняются логические операции И и НЕ и, следовательно, в целом он реализует логическую операцию И-НЕ.
Если на всех входах элемента действует напряжение высокого уровня (лог.1), то на выходе первой части схемы (в точке А) образуется напряжение высокого уровня. Это напряжение через диоды VD пердаются на вход транзистора, который оказывается в режиме насыщения, на выходе элемента напряжение низкого уровня (лог.0).
рис. 2.7.
Если же хотя бы на одном из входов будут действовать напряжение низкого уровня (лог.0), то в точке А образуется напряжение низкого уровня (близкого к нулю), транзистор закрыт и на выходе элемента напряжение высокого уровня (лог.1). Работа диодного элемента И в интегральном исполнении отличается от работы рассмотренного выше такого же элемента на дискретных компонентах тем, что при одновременной подаче лог.1 на все входы - все диоды оказываются закрытыми. Благодаря этому уменьшается до весьма малого значения потребление тока от источника, подающего на вход напряжение лог.1.
Рассмотрим подробнее работу инверторной части элемента. Вначале отметим некоторые особенности транзисторов интегральных микросхем. В микросхемах используются кремниевые транзисторы типа n-p-n (при этом напряжение коллекторного питания имеет положительную полярность и транзистор открывается при положительном напряжении между базой и эммитером). На рис. 2.8 показана типичная зависимость тока коллектора от напряжения между базой и эммитером в активном режиме. Особенность этой характеристики в том, что практически транзистор начинает открываться при относительно высоких значениях базового напряжения (обычно превышающих 0,6 В). Эта особенность позволяет обходиться без источников базового смещения, так как и при положительных напряжениях на базе в десятые доли вольта транзистор оказывается практически закрытым. Наконец, еще одна особенность транзистора микросхем состоит в том, что напряжение между коллектором и эммитером в режиме насыщения сравнительно высоко (оно может быть 0,4 В и выше).
рис. 2.8.
Пусть сигналы на входы логического элемента подаются с выходов аналогичных элементов. Примем напряжение лог.1 равным 2,6 В, напряжение лог.0 равным 0,6 В, напряжения на открытых диодах и напряжение база - эмиттер насыщенного транзистора равными 0,8 В.
При подаче на все входы (см. рис. 2.7) напряжения 2,6 В (уровень лог.1) закрываются диоды на входах, ток от источника Е 1 через резистор R 1 , диоды VD проходит в базу транзистора, устанавливая транзистор в режим насыщения. На выходе элемента образуется напряжение низкого уровня 0,6 В (уровень лог.0). Напряжение U А равно сумме напряжений на диодах VD и напряжения U БЭ: 3·0,8 = 2,4 В. Таким образом, входные диоды оказываются под обратным напряжением 0,2 В.
Если хотя бы на один из входов подается напряжение низкого уровня 0,6 В (уровень лог.0), то ток от источника Е 1 замыкается через резистор R 1 , открытый входной диод и источник входного сигнала. При этом U А = 0,8 + 0,6 = 1,4 В. При таком напряжении транзистор оказывается закрытым благодаря смещению, обеспечиваемому диодами VD (эти диоды называются смещающими диодами ). Ток от источника Е 1 , протекая через резистор R 1 , диоды VD и резистор R 2 , создает на смещающих диодах падение напряжения, близкое к U А. Напряжение U БЭ положительно, но значительно меньше 0,6 В, и транзистор закрыт.
Элемент И-НЕ диодно-транзисторной логики (ДТЛ)
Основная схема элемента, приведенная на рис.2.9, как и рассмотренная выше схема элемента ДТЛ, состоит из двух последовательно включенных функциональных частей: схемы, выполняющей операцию И, и схемы инвертора. Отличительная особенность построения схемы И в элементе ТТЛ состоит в том, что в ней использован один многоэмиттерный транзистор МТ, заменяющий группу входных диодов схемы ДТЛ. Эмиттерные переходы МТ выполняют роль входных диодов, а коллекторный переход - роль смещающего диода в цепи базы транзистора инвертирующей части схемы элемента.
При рассмотрении принципа работы МТ его можно представить сотоящим из отдельных тарнзисторов с объединеными базами и коллекторами, как показано на рис.2.9,б.
рис. 2.9
Пусть на все входы элемента подано напряжение уровня лог.1 (3,2 В). Возможное при этом распределение потенциалов в отдельных точках схемы приведено на рис.2.10,а. Эмиттерные переходы МТ оказываются смещенными в обратном направлении (потенциалы эмиттеров выше потенциалов базы), коллекторный переход МТ, наоборот, смещен в прямом направлении (потенциал коллектора ниже потенциала базы). Таким образом, МТ можно представить транзисторами, работающими в активном режиме с инверсным включением (в таком включении эмиттер и коллектор меняются ролями). Многоэмиттерный транзистор выполняется таким образом, чтобы его коэффициент усиления в инверсном включении был много меньше единицы. Поэтому эмитторы отбирают от источников входных сигналов малый ток (в отличии от элементов ДТЛ, где этот ток через закрытые входные диоды практически равен нулю). Базовый ток МТ через коллекторный переход втекает в базу транзистора VT, удерживая последний в режиме насыщения. На выходе устанавливается напряжение низкого уровня (лог.0).
рис. 2.10.
Рассмотрим другое сотояние схемы. Пусть хотя бы на одном из входов действует напряжение уровня лог.0. Возникающее при этом распределение потенциалов показано на рис.2.10,б. Потенциал базы МТ выше потенциала эмиттера и коллектора. Следовательно, оба перехода, эмиттерный и коллекторный, смещены в прямом направлении и МТ находится в режиме насыщения. Весь базовый ток МТ замыкается через эмиттерные переходы. Напряжение между эмиттером и коллектором близко к нулю, и действующий на эмиттере низкий уровень напряжения через МТ передается на базу транзистора VT. Транзистор VT закрыт, на выходе высокий уровень напряжения (уровень лог.1). При этом практически весь базовый ток МТ замыкается через смещенный в прямом направлении эмиттерный переход МТ.
Основные параметры интегральных логических элементов
Рассмотрим основные параметры и способы их улучшения.
Коэффициент объединения по входу определяет число входов элемента, предназначенных для подачи логических переменных. Элемент с большим коэффициентом объединения по входу имеет более широкие логические возможности.
Нагрузочная способность (или коэффициент разветвления по выходу ) определяет число входов аналогичных элементов, которое может быть подключено к выходу данного элемента. Чем выше нагрузочная способность элементов, тем меньше число элементов может потребоваться при построении цифрового устройства.
Для повышения нагрузочной способности в ДТЛ и ТТЛ применяют усложненную схему инвертирующей части. Схема элемента с одним из вариантов сложного инвертора приведена на рис.2.11.
рис. 2.11
Рисунок 2.11,а иллюстрирует режим включенного элемента. Если на всех входах действует напряжение уровня лог.1, весь текущий через резистр R1 ток подается в базу транзистора VT2. Транзистор VT2 открывается и переходит в режим насыщения. Эмиттерный ток транзистора VT2 втекает в базу транзистора VT5, удерживая этот транзистор в открытом состоянии. Транзисторы VT3 и VT4 закрываются, так как при эмиттерном переходе каждого из них действует напряжение 0,3В, недостаточное для открывания тарнзисторов.
На рис. 2.11,б показан режим выключенного элемента. Если хотя бы на одном из входов действует напряжение уровня лог.0, то ток резистора R1 полностью переключается во входную цепь. Транзисторы VT2 и VT5 закрываются, на выходе напряжение уровня лог.1. Транзисторы VT3, VT4 работают в двух последовательно включенных эмиттерных повторителях, на вход которых подается ток через резистор R2, а эмиттерный ток транзитсора VT4 питает нагрузку.
В выключенном состоянии элемента с простым инвертором ток в нагрузку подается от источника питания через коллекторный резистор Rк с большим сопротивлением (см. рис. 2.11,б). Этот резистор ограничивает максимальное значение тока в нагрузке (с ростом тока нагрузки увеличивается падение напряжения на Rк, уменьшается напряжение на выходе). В элементе со сложным инвертором в нагрузку подается эмиттерный ток транзистора VT4, работающего в схеме эмиттерного повторителя. Так как выходное сопротивление эмиттерного повторителя мало, то выходное напряжение равно слабее зависти от тока нагрузки и допустимы большие значения нагрузочного тока.
Быстродействие логических элементов является одним из важнейших параметров логических элементов, оно оценивается задержкой распространения сигнала от входа к выходу элемента.
На рис.2.12 приведена форма входного и выходного сигналов логического элемента (инвертора): t 1,0 3 - время задержки переключения выхода элемента из состояния 1 в сотояние 0; t 0,1 3 - задержка переключения из состояния 0 в состояние 1. Как видно из рисунка, время задержки измеряется на уровне, среднем между уровнями лог.0 и лог.1. Средняя задержка распространения сигнала t з ср = 0,5 (t 0,1 3 + t 1,0 3). Этот параметр используется пр расчете задаержкит распространения сигналов в сложных логических скхемах.
рис. 2.12
Рассмотрим факторы, влияющие на быстродействие логического элемента, и методы повышения быстродействия.
Для повышения скорости переключения транзисторов в элементе необходимо использовать более высокочастотные тарнзисторы и перключение транзисторов производить большими управляющими токами в цепи базы; существенное уменьшение времени задержки достигается благодаря использованию насыщенного режима работы транзитсоров (в этом случае исключается время, необходимое на рассасывание неосновных носителей в базе при выключении транзисторов).
рис. 2.13
Этот процесс можно ускорить следующими приемами:
· уменьшением R (и следовательно уменьшением постоянной времени ); однако при этом растут потребляемые от источника питания ток и мощность;
· использование в элементе малых перепадов напряжения;
· применение на выходе элемента эмиттерного повторителя, уменьшающего влияние емкости нагрузки.
Ниже при описании логических элементов эмиттерно-связаной логики показано использование этих методов для повышения бысеродействия элементов.
рис. 2.13
Помехоустойчивость определяется максимальным значением помехи, не вызывающей нарушения работы элемента.
Для количественной оценки помехоустойчивости воспользуемся так называемой передаточной характеристикой логического элемента (инвертора). На рисунке 2.14 приведена типичная форма этой характеристики.
рис. 2.14
Передаточная характеристика представляет собой зависимость выходного напряжения от входного. Для ее получения необходимо соединить все входы логического элемента и, изменяя напряжение на выходе, отмечать соответствующие значения напряжения на выходе.
При увеличении входного напряжения от нуля до порогового уровня лог.0 U 0 п напряжение на выходе уменьшается от уровня лог.1 U 1 min . Дальнейшее увеличение входного приводит к резкому снижению выходного. При больших значениях входного напряжения, превышающих пороговый уровень лог.1 U 0 max . Таким образом, при нормальной работе элемента в статическом (установившемся) режиме недопустимы входные напряжения U 0 п < u вх
Допустимыми считаются такие помехи, которые, наложившись на входное напряжение, не выведут его в область недопустимых значений U 0 п < u вх
Логический элемент эмиттерно-связанной логики
Типовая схема интегрального элемента эмиттерно-связанной логики приведена на рис. 2.15.
рис. 2.15.
Транзисторы VT 0 , VT 1 , VT 2 , VT 3 работают в схеме переключателя тока, транзисторы VT 4 , VT 5 - в выходных эмиттерных повторителях. На схеме показаны значения потенциалов в различных точках при подаче на вход напряжения уровня лог.1; в скобки заключены значения потенциалов тех же точек для случая, когда на все входы элемента подано напряжения уровня лог.0. Значения этих потенциалов соответствуют следующим уровням:
· напряжение источника питания E к = 5 В;
· уровень лог.1 U 1 = 4,3 В;
· уровень лог.1 U 0 = 3,5 В;
· напряжение между базой и эмиттером открытого транзистора U бэ = 0,7 В.
Рассмторим принцип работы интегрального логического элемента ЭСЛ (см. рис. 2.15).
Пусть на Вх 1 подается напряжение U 1 = 4,3 В. Транзистор VT 1 открыт; эмиттерный ток этого транзистора создает на резисторе R падение напряжения U а = U 1 -U бэ = 4,3 - 0,7 = 3,6 В; коллекторный ток создает на резисторе R к1 напряжение U Rк1 = 0,8 В; напряжение на коллекторе транзистора U б = E к - U Rк1 = 5 - 0,8 = 4,2 В.
Напряжение между базой и эмиттером транзистора VT 0 U бэ VT0 = U - U а = 3,9 - 3,6 = 0,3 В; это напряжение недостаточно для открывания транзистора VT 0 . Таким образом, открытое состояние любого из транзисторов VT 1 , VT 2 , VT 3 приводит к закрытому состоянию транзистора VT 0 . Ток через резистор R к2 весьма мал (течет лишь базовый ток транзистора VT 5) и напряжение на коллекторе VT 0 .
Рассмотрим другое состояние логического элемента. Пусть на всех входах действует напряжение лог.0 U 0 = 3,5 В. При этом оказывается открытым транзистор VT 0 (из всех транзисторов, эмиттеры которых объеденины, открывается тот, на базе которого более высокое напряжение); U а = U - U бэ = 3,9 - 0,7 = 3,2 В; напряжение между базой и эмиттером транзисторов VT 1 , VT 2 , VT 3 равно U бэ VT1...VT0 = U 0 - U а = 3,5 - 0,7 = 0,3 В и эти транзисторы закрыты; U б = 5 В; U в = 4,2 В.
Напряжения от точек б и в передаются на выходы элемента через эмиттерные повоторители; при этом уровень напряжения снижается на значение U бэ = 0,7 В. Обратим внимание на то важное обстоятельство, что напряжения на выходах равны U 1 (4,3 В), либо U 0 (3,5 В).
Выясним, какая логическая функция формируется на выходах элемента.
В точке в и на Вых 2 образуется напряжение низкого уровня при открытом транзисторе VT 0 , т.е. в случае, когда х 1 = 0, х 2 = 0, х 3 = 0. При любой другой комбинации значений входных переменных транзистр VT 0 закрыт и на Вых 2 образуется напряжение высокого уровня. Из этого следует, что на Вых 2 формируется дизъюнкция переменных х 1 Vх 1 Vх 1 . На Вых 1 формируется функция ИЛИ-НЕ .
Следовательно, логический элемент выполняет операции ИЛИ-НЕ и ИЛИ.
В мткросхемах ЭСЛ точку г делают общей, а точку д подключают к источнику питания с напряжением -5В. В этом случае потенциалы всех точек схемы снижаются до 5 В.
Расмотренный логический элемент относится к классу наиболее быстродействующих элементов (малое время задержки распространения сигнала) обеспечивается следующими факторами: открытые транзисторы находятся в активном режиме (не в режиме насыщения); применение на выходах эмиттерных повторителей обеспечивает ускорение процесса перезаряда емкостей, подключенных к выходам; транзисторы включены по схеме включения с общей базой, что улучшает частотные свойства транзисторов и ускоряет процесс их переключения; выбран малым перепад логических уровней U 1 -U 0 = 0,8 В (однако это приводит к сравнительно низкой помехоустойчивости элемента).
Логические элементы на МДП-транзисторах
рис. 2.16
На рис. 2.16 показана схема логического элемента с индуцированным каналом типа n (так называемая n МДП - технология). Основные транзисторы VT 1 и VT 2 включены последовательно, транзистор VT 3 выполняет роль нагрузки. В случае, когда на обоих входах элемента действует высокое напряжение U 1 (х 1 =1, х 2 =1), оба транзистора VT 1 и VT 2 оказываются открытыми и на выходе устанавливается низкое напряжение U 0 . Во всех остальных случаях хотя бы один из транзисторов VT 1 или VT 2 закрыт и на выходе устанавливается напряжение U 1 . Таким образом, элемент выполняет логическую функцию И-НЕ.
рис. 2.17
На рис. 2.17 приведена схема элемента ИЛИ-НЕ. На его выходе устанавливается низкое напряжение U 0 , если хотя бы на одном из входов действует высокое напряжение U 1 , открывающее один из основных транзисторов VT 1 и VT 2 .
рис. 2.18
Приведенная на рис. 2.18 схема представляет собой схему элемента ИЛИ-НЕ КМДП-технологии. В ней транзисторы VT 1 и VT 2 - основные, транзисторы VT 3 и VT 4 - нагрузочные. Пусть высокое напряжение U 1 . При этом транзистор VT 2 открыт, транзистор VT 4 закрыт и независимо от уровня напряжения на другом входе и состояния остальных транзисторов на выходе устанавливается низкое напряжение U 0 . Элемент реализует логическую операцию ИЛИ-НЕ.
КМПД-схема характеризуется весьма малым потребляемым током (а следовательно, и мощности) от источников питания.
Логические элементы интегральной инжекционной логики
рис. 2.19
На рис. 2.19 показана топология логического элемента интегральной инжекционной логики (И 2 Л). Для создания такой структуры требуются две фазы диффузии в кремнии с проводимостью n-типа: в процессе первой фазы образуются области p 1 и p 2 , второй фазы - области n 2 .
Элемент имеет структуру p 1 -n 1 -p 2 -n 1 . Такую четырехслойную структуру удобно рассматривать, представив ее соединением двух обычных трехслойных транзисторных структур:
p 1 - n 1 - p 2 n 1 - p 2 - n 1
Соответствующая такому представлению схема показана на рис.2.20,а. Рассмотрим работу элемента по это схеме.
рис. 2.20
Транзистор VT 2 со структурой типа n 1 -p 2 -n 1 выполняет функции инвертора, имеющего несколько выходов (каждый коллектор образует отдельный выход элемента по схеме с открытым коллектором).
Транзистор VT 2 , называемый инжектором , имеет структуру типа p 1 -n 1 -p 2 . Так как область n 1 у этих транзисторов общая, эмиттер транзистора VT 2 должен быть соединен с базой транзистора VT 1 ; наличие общей области p 2 приводит к необходимости соединения базы транзистора VT 2 с коллектором транзистора VT 1 . Так образуется соединение транзисторов VT 1 и VT 2 , показанное на рис.2.20,а.
Так как на эмиттере транзистора VT 1 действует положительный потенциал, а база находится под нулевым потенциалом, эмиттерный переход оказывается смещенным в прямом направлении и транзистор открыт.
Коллекторный ток этого транзистора может замкнуться либо через транзистор VT 3 (инвертор предыдущего элемента), либо через эмиттерный переход транзистора VT 2 .
Если предыдущий логический элемент находится в открытом состоянии (открыт транзистор VT 3), то на входе данного элемента низкий уровень напряжения, который действуя на базе VT 2 , удерживает этот транзистор в закрытом состоянии. Ток инжектора VT 1 замыкается через транзистор VT 3. При закрытом состоянии предыдущего логического элемента (закрыт транзисторVT 3) коллекторный ток инжектора VT 1 втекает в базу транзистора VT 2 , и этот транзистор устанавливается в открытое состояние.
Таким образом, при закрытом VT 3 транзистор VT 2 открыт и, наоборот, при открытом VT 3 транзистор VT 2 закрыт. Открытое состояние элемента соответствует состоянию лог.0, закрытое - сотсоянию лог.1.
Инжектор явялется источником постоянного тока (который может быть общим для группы элементов). Часто пользуются условным графическим обозначением элемента, представленным на рис. 2.21,б.
На рис. 2.21,а показана схема, реализующая операцию ИЛИ-НЕ. Соединение коллекторов элементов соответствует выполнению операции так называемого монтажного И . Действительно, достаточно, чтобы хотя бы один из элементов находился в открытом состоянии (состоянии лог.0), тогда ток инжектора следующего элемента будет замыкаться через открытый инвертор и на на объединенном выходе элементов установится низкий уровень лог.0. Следовательно, на этом выходе формируется величина, соответствующая логическому выражению х 1 ·х 2 . Применение к нему преобразования де Моргана приводит к выражению х 1 ·х 2 = . Следовательно, данное соединение элементов действительно реализует операцию ИЛИ-НЕ.
рис. 2.21
Логические элементы И 2 Л имеют следующие достоинства:
· обеспечивают высокую степень интеграции; при изготовлении схем И 2 Л используются те же технологические процессы, что и при производстве интегральных схем на биполярных транзисторах, но оказывается меньшим число технологических операций и необходимых фотошаблонов;
· используется пониженное напряжение (около 1В);
· обеспечивают возможность обмена в широких пределах мощности на быстродействие (можно изменять на несколько порядков потребляемую мощность, что соответственно приведет к изменению быстродействия);
· хорошо согласуются с элементами ТТЛ.
На рис. 2.21,б показана схема перехода от элементов И 2 Л к элементу ТТЛ.
(2012-05-19)Из журнала «Радио»
Логических элементов, работающих как самостоятельные цифровые микросхемы малой степени интеграции и как компоненты микросхем более высокой степени интеграции, можно насчитать несколько десятков. Но здесь мы поговорим лишь о четырех из них — о логических элементах И, ИЛИ, НЕ, И-НЕ. Элементы И, ИЛИ и НЕ — основные, а И-НЕ является комбинацией элементов И и НЕ.
Что представляют собой эти «кирпичики» цифровой техники, какова логика их действия? Сразу уточним: напряжение от 0 до 0,4В, т. е. соответствующее уровню логического 0, мы будем называть напряжением низкого уровня, а напряжение более 2,4В, соответствующее уровню логической I,-напряжением высокого уровня. Именно такими уровнями напряжения на входе и выходе логических элементов и других микросхем серии К155 принято характеризовать их логические состояния и работу.
Условное графическое обозначение логического элемента И показано на Рис–1,а. Его условным символом служит знак «&», стоящий внутри прямоугольника; этот знак заменяет союз «и»в английском языке. Слева — два (может быть и больше) логических входа – X1 и X2, справа — один выход Y. Логика действия элемента такова: напряжение высокого уровня появляется на выходе лишь тогда, когда сигналы такого же уровня будут поданы на все его входы
Элемент И — умножение
Разобраться в логике действия логического элемента И поможет его электрический аналог (Рис–1, б), составленный из последовательно соединенных источника питания GB (например, батареи 3336), кнопочных переключателей SB1, SB2 любой конструкции и лампы накаливания HL (МНЗ,5-0,26). Переключатели имитируют электрические сигналы на входе аналога, а нить лампы индицирует уровень сигнала на выходе. Разомкнутое состояние контактов переключателей соответствует напряжению низкого уровня, замкнутое- высокого уровня. Пока контакты кнопок не замкнуты (на обоих входах элемента напряжение низкого уровня), электрическая; цепь аналога разомкнута и лампа, естественно, не светит. Нетрудно сделать другой вывод: лампа накаливания на выходе элемента И включается только после того, как контакты обеих кнопок SB1 и SB2 окажутся замкнутыми В этом и заключается логическая связь между входными и выходными сигналами элемента И.
Теперь взгляните на Рис–1,в. На нем изображены временные диаграммы электрических процессов, дающие достоверное представление о работе логического элемента И. На входе X1 сигнал появляется первым. Как только такой же сигнал будет и на входе Х2, тут же появляется сигнал и на выходе Y, который существует до тех пор, пока на обоих входах имеются сигналы, соответствующие напряжению высокого уровня.
О состоянии и логической связи между входными и выходным сигналами элемента И дает представление так называемая таблица состояний (Рис–1, г), напоминающая таблицу умножения. Глядя на нее, можно сказать, что сигнал высокого уровня на выходе элемента будет только тогда, когда сигналы такого же уровня появятся на обоих его входах. Во всех других случаях на выходе элемента будет напряжение низкого уровня, т. е. соответствующее логическому 0
Элемент ИЛИ
Условный символ логического элемента ИЛИ — цифра 1 внутри прямоугольника (Рис–2, а). У этого элемента, как и у элемента И, может быть два и больше входов. Сигнал на выходе Y, соответствующий напряжению высокого уровня, появляется при подаче такого же сигнала на вход X1, или на вход Х2, или одновременно на оба входа. Чтобы убедиться в таком действии элемента ИЛИ, проведите опыт с его электрическим аналогом (Рис–2, б).
Лампа накаливания HL на выходе аналога будет включаться всякий раз, когда окажутся замкнутыми контакты или кнопки SB1, или SB2, или одновременно обеих (всех) кнопок Закрепить в памяти электрическое свойство элемента ИЛИ помогут временные диаграммы его работы (Рис–2,в) и таблица состояний (Рис–2,г), определяющая логическую связь между входными и выходным сигналами.
Элемент НЕ
Условный символ логического элемента НЕ — тоже цифра 1 в прямоугольнике Рис–3,а. Но у него один вход и один. выход. Небольшой кружок, которым начинается линия связи выходного сигнала, символизирует логическое отрицание на выходе элемента На языке цифровой техники НЕ означает, что этот элемент является инвертором- электронным устройством, выходной сигнал которого противоположен входному. Иначе говоря, пока на входе элемента НЕ действует сигнал низкого уровня, на его выходе будет сигнал высокого уровня, и наоборот.
Электрический аналог элемента НЕ можно собрать по схеме, представленной на Рис– 3, б. Электромагнитное реле К, срабатывающее при напряжении батарея GB, должно быть выбрано с группой замкнутых контактов. Пока контакты кнопки SB1 разомкнуты, обмотка реле обесточена, его контакты К остаются замкнутыми и, следовательно, лампа HL светит. При нажатии на кнопку ее контакты замыкаются, имитируя появление входного сигнала высокого уровня, в результате чего реле срабатывает. Его контакты, размыкаясь, разрывают цепь питания лампы HL-погасая, она символизирует появление на выходе сигнала низкого уровня. Попробуйте начертить самостоятельно временные диаграммы работы элемента НЕ и составить его таблицу состоянии — они должны получиться такими же, как приведенные на Рис–3, в, г.
Элемент И–НЕ
Как мы уже говорили, логический элемент И-НЕ является комбинацией элементов И и НЕ. Поэтому на его графическом обозначении (Рис–4, а) есть знак «&»и кружок на линии выходного сигнала, символизирующий логическое отрицание. Выход один, а входов два и больше.
Разобраться в принципе действия такого логического элемента цифровой техники вам поможет его электрический аналог, собранный по схеме на Рис–4,б. Электромагнитное реле К, батарея GB и лампа накаливания HL такие же, как в аналоге элемента НЕ. Последовательно с обмоткой реле включите две кнопки (SB1 и SB2), контакты которых будут имитировать входные сигналы. В исходном состоянии, когда контакты кнопок разомкнуты, лампа светит, символизируя сигнал высокого уровня на выходе. Нажмите на одну из кнопок во входной цепи.
Как на это реагирует индикаторная лампа? Она продолжает светить. А если нажать на обе кнопки? В этом случае электрическая цепь, образованная батареей питания обмоткой реле и контактами кнопок, оказывается замкнутой, реле срабатывает и его контакты К, размыкаясь, разрывают вторую цепь аналога-лампа гаснет. Эти опыты позволяют сделать вывод: при сигнале низкого уровня на одном или на всех входах элемента И-НЕ (когда контакты входных кнопок аналога разомкнуты) на выходе действует сигнал высокого уровня, который изменяется на сигнал низкого уровня при появлении таких же сигналов на всех входах элемента (контакты кнопок аналога замкнуты). Такой вывод подтверждается диаграммами работы и таблицей состояний, показанными на Рис–4, в, г. Обратим внимание на следующий факт: если входы элемента И-НЕ соединить вместе и подать на них сигнал высокого уровня, на выходе элемента будет сигнал низкого уровня. И наоборот, при подаче на объединенный вход сигнала низкого уровня на выходе элемента будет сигнал высокого уровня. В этом случае элемент И-НЕ, как, вероятно, вы уже догадались, становится инвертором, т. е. логическим элементом НЕ. Это свойство элемента И-НЕ очень широко используется в приборах и устройствах цифровой техники.
Элемент ИЛИ–НЕ
Элемент исключающий ИЛИ
Автоколебательный мультивибратор
При ёмкости конденсатора С = 1мкФ и изменении R от 0 до 1,5 ком. частота колебаний изменится от 300Гц до 10 кГц.
Ждущий мультивибратор
Изменением ёмкости и сопротивления изменяют длительность вырабатываемых импульсов.
Длительность запускающего импульса должна быть меньше длительности формируемого.
Сопротивление должно быть от 100 Ом до 2,2 к.
Триггер Шмитта
Это спусковое устройство с двумя устойчивыми состояниями. Из одного состояния в другое устройство переходит под действием входного сигнала.
Ещё он преобразует подаваемое на вход переменное напряжение синусоидальной формы в напряжение прямоугольной формы такой же частоты. Срабатывает при определённой амплитуде входного сигнала.
R S — триггер
При 0 на S и 1 на R, триггер находится в единичном состоянии. 1 на S и 0 на R, триггер в нулевом состоянии. Если на оба входа подать 0, на выходах будет 1. Это противоречит логике его действия и считается недопустимым. 1 на обеих входах не изменит первоначального состояния триггера.
D – триггер
D – Вход приёма цифровой информации.
C – Вход тактовых импульсов синхронизации.
0 – на входе R – триггер в нулевом состоянии.
0 – на входе S – триггер в единичном состоянии.
Логика работы D – триггера в режиме приёма информации следующая: если на входе D – 1, то по фронту тактового импульса на входе С – триггер устанавливается в единичное состояние, если на входе D – 0, то по фронту тактового импульса на входе С – триггер устанавливается в нулевое состояние.
На спады синхронизирующих импульсов D – триггер не реагирует. Каждое изменившееся состояние триггера означает запись в его память принятой информации.
Работа D – триггера в счётном режиме.
В счётном режиме триггер делит частоту входного сигнала на 2. Выполняет функцию двоичного счётчика.
J K – триггер
По входам R и S, он работает как RS триггер. Входы J и K – управляющие, каждый из них имеет по три входа объединённые по схеме 3И. С – вход тактовых импульсов. В режиме приёма и хранения информации он служит входом тактовых импульсов, в счётном режиме – информационным входом.
J K – триггер, работает по спаду тактовых импульсов.